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Introduction

Radiative association is an important process in the gas phase chemistry of interstel-
lar clouds |19, 8]. The first galaxies and stars were formed from a gas of H and “He
with trace amounts of D, 3He and “Li [23]. The scale of the first cosmological objects
formed in the Universe was controlled by cooling, and it is often molecular cooling
that allows primordial clouds to collapse. Therefore the study of the first molecules
formation by radiative processes in primordial gases is important [13, 25, 3, 9, 22|.
Radiative association of Li™ + He, which is considered in this thesis, has not been
studied yet.

Let us present the brief overview of the contents of this diploma thesis. In
Chapter 1 we show that a potential barrier leads to shape resonances in the problem
of resonance scattering by a model repulsive barrier. Quasi-stationary levels are
located using a boundary condition method, the corresponding wave functions and
other characteristics will be found.

In Chapter 2 we derive the multipole line strength for Hund’s case (a) linear
molecules through the use of Clebsch-Gordan angular momentum coupling coeffi-
cients. We treat all the basic concepts of electric transitions using a quadrupole
moment terminology, which is rarely discussed in the literature.

The Chapter 3 deals with direct radiative association, which can occur when
a pair of atomic species approaches along potential energy curve with a relative
energy forming initially a collision complex. This unstable complex, generally con-
sidered to exist in the vibrational continuum of the ground/excited electronic state,
decays to a vibrational-rotational level of a lower bound electronic state. Radiative
association can proceed by spontaneous emission of a photon with energy equal to
hv. We summarize the relevant theory and carry out explicit calculations of the
cross sections for the radiative association of Li*(1s%) + He(1s%). These results are
obtained using a fully quantum mechanical method. Computations are carried out
in the programming language FORTRAN 95.



Chapter 1

Resonant scattering by a repulsive
barrier

In this chapter we shall discuss resonances in atoms/molecules, that is, states which
can be regarded as a temporary bound state capable of decaying by particle emission.
For a resonance to occur there are different mechanisms for retaining a projectile in
the target. A simple mean by which the projectile is trapped is a potential barrier.
Let us suppose that the incident particle experiences a region of attractive potential
surrounded by a region of repulsive potential. If the particle enters the region of
attractive potential, the surrounding potential barrier will hinder its escape. The
most common cause of a barrier is the centrifugal potential, but there are also many
potential curves which have barrier even for zero angular momentum. Resonances
which are supported by potential barriers are called shape resonances.

The best-known example is the radioactive nuclei which decay by the emission
of an a-particle which has tunnelled through the Coulomb barrier. The potential
energy of an a-particle in the field of a nucleus consists of two parts, the attractive
potential due to the short-range nuclear forces, and the potential barrier produced by
the Coulomb repulsion between protons and by the centrifugal force. The emission
of an a-particle is represented as a specific quantum phenomenon resulting from the
transparency of the barrier.

The potential necessary for the existence of shape resonances can be found in
both nuclear and molecular systems. In atomic and molecular systems the attractive
potential is due to the Coulomb attraction of electrons and protons, whereas the
barrier is normally caused by the centrifugal force.



1.1 Theoretical model

Let us consider a model with a spherically symmetric repulsive shell potential of a

simplified shape
0 0<r<ry,
Ur)=< Uy 1m<r<ry,

0 o < T.

The incident motion is assumed to be in the z direction, angular momentum is
conserved, the radial part of the wave function satisfies one-dimensional equation

r>0, (1.1)

h? [ d? 2 d
ol T rar + Vi(r)| R(r) = ER(r),

where R LD+ 1)
_|._
VL(T) = %T‘i‘U(T)
and m is the mass of a particle. By substituting R(r) = 1(r)/r equation (1.1) is
simplified to the one-dimensional radial Schrédinger equation of the form
(1.2)

h? d?
—o g T Var)| () = Eg(r).

One boundary condition being ¢(0) = 0, the other condition is not imposed
forasmuch as in the range of large values of the independent variable the solution of

the Schrodinger equation exhibits sinusoidal behaviour.
In the region I the wave function vanishing for » = 0 has the form
2MFE
Y(r) = Asinkr, k* = ot

In the region II the general solution with respect to r — ry is
2 _ 2M(Uy — E)

b(r) = BpettT £ Bt g =

For the wave function in the region I1I, where once again U = 0, we have
w(r) _ CJreik(rer) + Ciefik(rfrz) )

The coefficients B, , B_,C,,C_ are determined from the continuity condition of the
wave function and its first derivative. At the boundary of regions I and II these
conditions lead to the relations
Asinkry = B, + B_,
Ak coskry = k(By — B_),



whence

1 k
B, ==-A (sin kry + —cos km) 5
2 K

] ) (1.3)
B_=- (sin kry — — cos krl) .
2 K
Similarly, at the boundary of regions IT and IIT we have
BJren(rzfm) + Bie*I{(TQ*TI) — O+ + O 7
K <B+€m(r2—r1) _ B_e—n(m—rl)) — ik((]+ _ O_) )
From the latter equations, we find C'; and C_ in terms of A:
¢, = L Asin kry (1 + f) err2=ri ] ¢ je%wﬁu
Ty ik 1+ £
k 1—=
+—cot kry (1 — _1: 6_2"‘(”_”)>] ,
] B 145 (1.4)
C_=-Asinkr <1 — _—) eilrz=m)| | 4 2 ik o= 26(ra=m) 4
4 ik 11—
k 1+ £
+— cot kry (1 -k 6_2R(T2_T1)):| .
K 1-— &

The formulae (1.3) and (1.4) constitute the stationary wave function corresponding
to the energy E which largely influences the behavior of the wave function for the
particle. We shall consider the limiting case x(ro — r;) > 1. Then we may neglect
all the terms containing the factor e=2#("2="1) and the coefficients will then have the
form

1 k
Cy e JAsinkn (142 ) e (14 Zeothr ), €L =7,
4 ik K

The quantity of C'; and C_ compared to A depends to a great extent on the expres-
sion 1 + (k/k) cot kry. For certain values of the energy called the quasi-stationary
levels, which lie in the vicinity of the roots of the transcendental equation

E, 2ME,
14/ v

t =0 1.5
0B co - 1 , (1.5)
the coefficients C';, C_ are considerably smaller than A.
It may readily be shown from the condition of continuity ¢ and ¢’ and from the
boundary condition for large r that the roots of Eq. (1.5) are bound states for a
particle in the potential shown in Fig. 1.1 (ry — o0).
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1.2 Numerical results

In our numerical study we consider a particular rectangular barrier with the param-
eters Uy = 1eV, r; = 1079 m, ry = 2x 107 m. Numerical computation with electron
mass 0.510998910 MeV /c? gives quasi-energy levels of Eres; = 0.259051096847 ¢V
and Freso = 0.947017018143 eV (Fig. 1.2) which are found when the expression
in the square brackets of (1.4) vanishes. These values were obtained using the
software Maple 11, specifically the "fsolve" command. Solving Eq. (1.5) gives
E; =0.259061203092 eV and Ey = 0.938471516153 V.

Therefore the wave functions corresponding to the values of the energies in the
narrow band in the vicinity of the quasi-levels are suppressed by the potential bar-
rier in the region III (see Fig. 1.3a). This effect of resonant behavior becomes
particularly evident in Fig. 1.4b and 1.5a, in which the wave functions are shown
at fixed resonance energies Fres; and FEress.

Figures 1.3b, 1.5b and 1.3c, 1.5c illustrate the behavior of wave functions for
the external quasi-bound region. The dominant amplitude shifts to the region III,
where the wave function differs significantly from zero as seen in Fig. 1.3c and 1.5¢c.
Finally, note the sharp variation in the amplitudes and the change of 7 in the phase
shift when passing through the resonance point £ = Freg; in Fig. 1.4.

The results shown in Figures (1.3a) and (1.4b) indicate that the first (lower)
resonance is well localized by the formula (1.5) which is in agreement with the
assumption k(ry — 1) > 1. For the second (higher) resonance, this assumption can
not be used to simplify Eq. (1.4).
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Figure 1.1: Schematic diagram of a potential barrier with its bound states.
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Figure 1.2: Plot of the potential barrier with its quasi-levels.
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Figure 1.3: Plot of the scattered wave functions for energy F; = 0.259061203092 eV
in the first resonance region and for energies 0.26 eV and 0.27eV.
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Figure 1.5: Plot of the scattered wave functions for the second resonance Erego =
0.947017018143 eV and for energies 0.95eV and 0.92eV.



The resonance is characterized by its energy E and tunelling width T'. The
lifetime of the decay and the energy is related by an approximate formula [16]
M K} 2M(Uy — Ep)
t 2 "0 2k(ro—r1) 2 0 0
T = St 7M1 4 k), R = —— 5
where Ej is the lowest resonance energy. The width I'* is determined from the
lifetime of the state by the relation

(1.6)

h
Calculated values of resonance widths and lifetimes for the resonance energies via
equations (1.6) and (1.7) are listed in Table 1.1.

Table 1.1: Comparison of calculated resonance widths and lifetimes.

E It Tt

Fres1 = 0.259051096847 eV 0.000066940095 eV 9.83 x 10~ %5
Fress = 0947017018143 eV 0.014213192312eV  4.63 x 1075

The solution of Eq. (1.2) has the asymptotic form (i.e., for r — o0) [20]
¥(r) ~ D [sin (kr — L7 /2) + tan éy, cos (kr — Lw/2)], (1.8)

where 07, is the real scattering phase shift of the Lth partial wave induced by the
potential V'(r). The value of tand; may be computed using the formula

(Ry)sin (kRy — L /2) —¢(Ry)sin (kRy — L/2)
(Ry)cos (kRy — L /2) — (Ry) cos (kRy — L/2)

for Ry and R, distinct points in the asymptotic region such that R, is the right-hand
end point of the interval of integration and Ry = R, — h where h is the step interval.
The term L7 /2 in (1.8) is conventional. The numbers [5]

27 h?
- ME
are usually called partial cross sections, and the total scattering cross section o(F)
is their sum over all L.

The partial cross sections for L = 0 as a function of the energy for each of the
quasi-bound states are displayed in Figure 1.7. The phase shift behavior for L = 0
is indicated in Figure 1.6.

As we shall see in the third chapter the quasi-bound resonance states play a
crucial role in the process of radiative association.

tandy = (1.9)

or(E) (2L + 1) sin”® 6., (E)

10
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Chapter 2

Theory of electric-multipole
transitions for linear molecules

2.1 Background

Let an atom/molecule be in an excited level n, that is, in a level of more than the
minimum energy. Einstein then ascribes to it a certain probability per unit time,
A, _m, of making a spontaneous transition with emission of radiation to each level
m of lower energy. For electric dipole transitions, the Einstein transition probability
of spontaneous emission from excited state n to lower state m is given in atomic
units (in which A =e =m, = 1) by [6]

64mivd  SAr( ) J")

Adie- — —m 2.1
e 3h 2J +1 (2.1)

where S4P-(.J’, J") is the line strength defined in the terms of the dipole moment and
Up—sm = (En, g — Em g»)/hc is the wavenumber of each emitted photon. Similarly,
the Einstein spontaneous quadrupole emission probability for the transition from n
to m in atomic units becomes

65
Aquad. _ 327 Vi—m

Squad.({]!7 J//)
e 5k 2J'+1

where S9ad-(J'" J") is the corresponding line strength for transition based on the
quadrupole moment. Note the common convention that J’ corresponds to the upper
rotational quantum number of the excited state n, while J” corresponds to that of
the lower state m.

12



2.2 Fundamental formula for the line strengths

In this section we derive line strength formulae for Hund’s case (a) linear molecules.
For general discussion of Hund’s cases see Ref. [4]. Throughout this chapter we will
follow notation of Ref. [11]|. Derivation will be performed for quadrupole moment.
Generalized multipole line strength will be found through a direct analysis of the
quadrupole line strength. We use capital letters for space-fixed axes and lower case
letters for molecule-fixed axes. The notation for quantum number symbols will be
as follows: The quantum number J corresponds to the total angular momentum of
a diatomic molecule. The total angular momentum excluding the electronic spin
angular momentum is represented by quantum number N.

If the spin angular momentum S is tightly coupled to the internuclear axis, the
axial components of the electronic orbital angular momentum L and S are well
defined and are assigned a quantum number A and ¥. Their sum is denoted (2, i.e.,
Q2 = A+ >. This kind of coupling, for which J is the most appropriate quantum
number to be used to describe the total angular momentum, is called Hund’s case
(a). When the spin vector S is no longer coupled to the internuclear axis, 2 is
consequently not defined, and it is more appropriate to use NN instead of the total
angular momentum quantum number. This is Hund’s case (b). These two cases are
the most widely observed for diatomic molecules. For Hund’s case (a) type molecules
the projection of angular momentum P along the internuclear axis, represented by
quantum number 2, commutes with Hamiltonian of the system. In other words P
is conserved.

The electric quadrugole moment can be written in terms of second-rank spherical
tensor components Qz(f (X), where X = (XY, Z) are the laboratory-fixed coordi-
nates, and p = —2,—1,0,1,2 represents the projection quantum number of the
quadrupole moment. Upon an inverse rotation to express the space coordinates
(X,Y,Z) in terms of the molecular coordinates x = (x,y, z), in which quantum
mechanical calculations are generally performed, the quadrupole moment becomes

QP (X) => TP (x), (2.2)

q

where Tp(g)* is the second-rank spherical rotation tensor in terms of the Euler angles
w = (afy) satisfying

2 * 2
ngq)(av 67 7) = Tq(p)(_a7 _67 _7) :

The symbol w is commonly used as a short-hand for the orientation (af7). The
volume element for integration is dw = sin fdadfdy, and [ dw = 872
The line strength S9ud-(J', J”) for the electric-quadrupole transition between

13



two rovibronic states of the form

i) = \n QT ML Q) =0 Q’HJ' M QY
|¢f> — ’ //7 Q//’ (]//7 ]\4//7 Q//) — , //7 Q//) |(]//7 ]\4//7 Q/> ’
where v is the vibrational quantum number, the label n stands for the assembly

of all other relevant electronic quantum numbers and M range through the 2J + 1
degeneracies, is given in the space-fixed frame by

gauad. J/ J// Z Z }wz’Q ‘wf”
p M’ M

To simplify the calculation, if there is no spatial preference for the laboratory-fixed
quadrupole moment, we may also choose the Z-axis to be the internuclear axis.
Given these assumptions the quadrupole terms reduce to five terms, in which p can
be set to equal zero:

() =5 3 |l QP X))

M/’M//

Introducing the transformation (2.2) into the above equation, we get

Squad.(J/’ J//) -5 Z

M/7M//

Z <77,/, ’U/, Q/’ QgQ) ‘n//’ ’UH, Q//><J/, M/7 Q/’ TéqQ)* ‘J”7 M”, Q//>

q

(2.3)
Note that we have made use of the Born-Oppenheimer approximation which allows
us to separate the vibronic |n,v, Q) and rotational |J, M, Q) wave functions.
Due to the symmetry of linear molecules along the internuclear axis, the nor-
malized rotational wave function of a symmetric top is of the form [11]

2J+1>1/2

82

Dz{m (Oéﬁ’Y)* )

(. B3|, M, Q) = (

where D7,," is the complex conjugate of the M element of the (27 +1) x (2J + 1)
matrix called a Wigner rotation matrix. We now may evaluate the matrix elements

of Tp(?* as
(2 + 1)(2J" + 1)]?
72

(J', M, Q| TP I M", Q) = / Dy T2 Difngy dw .
(2.4)
The value of the integral in Eq. (2.4) is given as a function of Clebsch-Gordan

coefficients by

872

/ Do Tod) D jugy dw = 7T (J QLT 2, )T, M |J", M”:2,0) . (2.5)

14



Using (2.4) and (2.5), Eq. (2.3) can be now rewritten as

Squad. g " _52J/,+1 J" M"2.0l.J M 2
(T =5 S D2 M 2,010
M/’MN
2
« Z (n',v',Q’\ Qz(12) |n”,v”,Q”><J’,M',Q’\ T(g)* |J”,M”,Q”>
q

If we now rewrite (J”, M";2,0|J'M') through the identity [12]

2J+1
270+ 1

1/2
<j1,m1;j2,m2|J, M> = (—1)]177”1 ( > <j17m1;J7_M|j27_m2>
and apply the sum rule property (2.7) on the term >, 1 |[(J", M"; J', —M'[2, 0)]2,
then the line strength reduces to
2
Sq“ad'(,]” J”) _ (2J” + 1) Z <n/7v/7 Q/‘ Qz(12) ’n//7v//’ Q”><J/, M’, Q" TO(;)* ’J”, ]\/[//7 Q”)

q

The summation over ¢ = Q' — Q" = AQ is redundant, because only one value for ¢
is defined by the transition being considered, namely

Squad.(J/7 J//) — }<n/7v/7 Q/‘ Q(Q) ‘n//7v//’ Q//>}2 (QJ// + 1) ’<J”7 Q//; 27 AQ’J/7 Q/>’27

for AQ =—-2,-1,0,1,2 and for AJ =J" —J"=-2,—-1,0,1,2 (the O, P, Q, R, S
branches). Accordingly, for a dipole moment

Sdip'(J/, J//) — }<n/’ Ul, Q,‘ Q(l) ‘n//’ U”, Q”) (2J” + 1) |<J”, Q”; 1’ AQ‘J’, Q/>|2 :

}2
for AQQ = —1,0,1 and for AJ = J — J" = —1,0,1 (the P, @, R branches). The
general multipole line strength formula for an allowed rovibronic transition can be
calculated through the same procedure to obtain

2
—pol l —pol
s’ poe((]/’ J”) ‘Mé’),v/,ﬂ’;n”,v”,ﬂ” ! poe((]/’ J”)

where the vibronic transition moment is given by
M(l) — (.Y (ORPN/Aw O 26
n! W Q! " QT <n U ‘ Q |n Uy > ( . )

and the quantity representing a rotational part of the line strength is called the
Honl-London factor

yl*pole(t]/’ J//) _ (QJ// + 1) ’(‘]H> Q//; l, AQ’J/, Q/>’2,
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for NQ = —l,—1l+1,....1—1,land for AJ =J —J" = —l,-1+1,...,1 —1,L
Explicit expressions for the Honl-London factors of dipole and quadrupole moment
are given in Tables 2.1 and 2.2.

Finally, we separate off the electronic motion by invoking the Born-Oppenheimer
approximation, when the electronic wave function is obtained on the assumption
that the nuclei are at a fixed separation R, by writing the vibronic wave function
as a product |n,v,Q) = Y, a(re; R)i,(R). Therefore, the matrix element of the
transition moment (2.6) can be written as

My, = /0 . Yy (R) QV(R) 1y (R) dR..

Table 2.1: Honl-London factors for electric dipole transitions of linear Hund’s case
(a) molecules.

A (g1 AT =—1 AJ =0 AT =+1
P-branch (-branch R-branch
AQ = —1 S+ +D)(J 4+ +2) QI +D)(T =) (I +V+1) (I = 1) (J Q)
- 2(J/+1) 277 (J'+1) 2’
o (J = +1)(J'+Q'+1) Q2(2J'+1) (J' =) (J'+9Q")
A2 =0 T D —
o (J' = +1)(J —Q'+2) 2J'+1)(J'+Q)(J' —Q'+1) (J'+Q'—=1)(J +Q)
A = +1 2(J7+1) 277 (J'+1) 2’
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L1

Table 2.2: Honl-London factors for electric quadrupole transitions of linear Hund’s case (a) molecules.

pavad-( g7y AT =—1 AJ =0 AT =+1
P-branch @-branch R-branch
AQ = — (J = Q) (J QD) (J QY F2)(J 4+ 43) 3T +D)(J = 1) (J Q)T+ D) (J QL +2) (= =2)(J = 1) (J Q) (T +Q +1)
- 27 (T +1)(J'+2) (277 =1)2J (J+1)(2J7+3) 2(J7—1)J'(J+1)
AQ = — (J =202 (J'+Q' +1)(J' +Q'+2) 3(2J"+1)( 2 +1)2(J' Q) (J'+Q'+1) (J'+2Q'+1)2(J' —Q'—1)(J —Q')
- 2J(J'+1)(J'+2) 2127 =1)J'(J'+1)(2J'+3) 2(J'=1)J'(J'+1)
AQ =0 3Q2(J Q' +1)(J +Q'+1) (2J'+1)(3Q2—J'(J'+1))* 3Q2(J' Q) (J'+9)
- J(J+1)(J+2) J(J+1)(2J"—1)(2J'+3) (J'=1)J' (J'+1)
AQ = +1 (J'4+29)2(J' = Q' +1)(J' = +2) 3(2J'+1)(2Q —1)2(J'+Q')(J' = +1) (J' =2 +1)2(J +Q'=1)(J'+8")
- 27 (T +1)(J'+2) 2027 —1)J'(J'+1)(2J7+3) 200 =1)J'(J+1)
AQ = 42 (J 4+ (= +D)(J = +2)(J =Q'+3) 32 +1)(J' 4+ =D)(J +Q)(J = +D)(J = +2) (S =2)(J+Q =1)(J'+Q)(J =/ +1)
- 2J'(J'+1)(J'+2) (2J'—=1)2J"(J' +1)(2J'+3) 2(J'—1)J'(J +1)

avad- (g7 AJ = — AJ = +2
O-branch S-branch

A — — (S AU (42 (S Q43 (S + D +4) (S =2 =3)(J = =2)(J = 1) (J =)
- AT+ (T +2) (2] +3) 477 (T —1) (277 —1)

A — — (=Y D) (S Q1) (' +Q/42)(J +9'+3) (J = =2)(J = =1)(J =) (J +2)
- (D) ([T7+2)(277+3) J(JT=1)(2J7—1)

AQ = 0 3(J = 1) (S = +2)(J QD) (S HQ+2)  3(S Q1) (J =) (I Q1) (] +Q)
- 2077+ 1) (J+2)(277+3) 2J7(J'—1)(2J'—1)

AQ = 41 (J/ = 1) (I = +2) (J = +3) (S +Q +1) (I =) (I Q) (J +Q —1)(J'+Q'~2)
- (T+D)(T7+2)(277+3) (T =1)(2J-1)

AQ = 42 (=4 =+ (J =V +3)(J =0 +4) (S 4+ -3)(J +-2)(J +Q' -1)(J'+Q)

4(J 1) (J'+2) (207 +3)

47 (J—1)(20'—1)




2.3 Appendix: Coupling of angular momenta

The coupling of two angular momenta J; and Js to form a resultant one, J = J;+J5,
is familiar to all physicists. It is supposed that J; and J5 act on different physical
systems, or else on independent parts of the same system. This guarantees that
J, and J5 commute, thereby ensuring that the components of J obey the standard
commutation relations. We can describe the combined system by two types of
ket. We can choose either the uncoupled states |ji,m1) |j2,mo), or the coupled
states |7, m, j1,72). For a given j; and jp, the tensor product of the vector space
spanned by the states |j;,my1), m1 = —Ji,...,71 and of the vector space spanned
by |j2, ma), ma = —ja, ..., jo has a (2j; + 1)(2j2 + 1) dimensional uncoupled basis
|j1,m1) |j2, m2). If we use the fact that j can run with integer step from j; + jj
down to |j; — jz|, there is an equal number of coupled kets as ;LT;?_M(Q]' +1) =
(271 +1)(2j2 + 1). The unitary transformation that connects the two descriptions
can be written in the general form:

U, m>j1>j2> = Z ’j1,m1> \j2>m2> <j1,j2>m1,m2\j, m} .

mi,ma2

The coefficients (ji, ja, m1, mo|j, m) are the celebrated Clebsch-Gordan angular mo-
mentum coupling coefficients. Phases can be chosen so that they are all real. The
total angular momentum states satisfy the orthogonality relations:

<j17m17j27m2|j7 m> <j7m|j17m,17j27m,2> - 5m1,m’ 6m27m/ )
1 2

J,m

ST Gomljsmi, o ma) (romi, joy malism'y = 8 G (27)

mi,m2

The Clebsch-Gordan coefficients are often replaced by the Wigner 3-7 symbols,
defined as

jl j2 j?) _ (_1\J1i—J2—m3 (o, ~1/2 /. . .
(m1 meo m3) ( 1) (2]3+1) <]17m17327m2’]3, m3>.

They exhibit symmetry relations of the Clebsch-Gordan coefficients in a more con-
venient way. The 3-7 symbol is invariant under an even or cyclic permutation in the
order of its columns

JuoJ2ogs\_( J2 gz v\ _( J3 J1 J2
my Mo Mg mo MMz 1My msz MMy Me ’

while odd permutation of the columns multiplies the 3-7 symbol by the phase factor
(_1)j1+j2+j3
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JioJ2 Js) _ (1) tiatis Jo g1 Js
mi Mo M3 my mp mg)’
as does a reversal in sign of the entries of the lower row
v Ja gz (—1)irtiatis JiJ2 Js
—my —MM9o —1M3 my Mo Mg '
Over the years, explicit algebraic formulae for the 3-j5 symbols have been calcu-

lated. The simplest of these formulae can be found tabulated in several texts, e.g.
[4, 10].
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Chapter 3

Radiative association of LiHe™

3.1 Theory and numerical methods

In this section we study quantum mechanically the direct radiative association pro-
cess
Lit(1s%) + He(1s*) — LiHe™(X'ST) + hv. (3.1)

One-dimensional radial Schrédinger equations associated with the molecular forma-
tion (3.1), in such case radiative transition from an initial electronic state to another
final electronic state, are of the form

h? d?
- = F 2
s+ Vo B)| W(R) = E(R) (32)
with an effective potential
n*J(J+1)

Here U(R) is a rotationless potential with a short-range repulsion and a long-range
attraction with the leading asymptotic term —C,/R* in the case of molecular ion
in an electronic state Y. That is, U(R) — 0 faster than the term J(J + 1)/R?
so the latter is the dominant term for sufficiently large values of R. p denotes
"charge-modified reduced mass" [24] of the molecular ion with charge Q, u =
(mamp)/(ma + mp — m.Q), where my and mp are the atomic masses of the
two atoms, m, is the electron mass. The wave function satisfies the boundary con-
dition P(0) = 0. In the so-called asymptotic region, where the potential U(R) is
negligible, Eq. (3.2) is effectively reduced, in atomic units, to

S N J(J+1)
dR? R?

PY(R) = K> P(R) for R — oo,
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where k% = 2uF.

The radial wave functions P = xp for £ > 0 and P = ¢y for £ < 0
are obtained as eigenfunctions of the Schrodinger equation (3.2) with a potential
curve VJ,(R) for an initial electronic state and V7, (R) for a final electronic state,
respectively. In our one-state process X — X the above pair of Schrodinger equations
simplifies to a single one from which the radial wave functions are obtained. At
sufficiently large distances the function x; may be normalized to a delta function
of energy 6(E — E') and so that it has the following asymptotic form [5]

1/2
xs(E,R) ~ <%) sin(kR — J'w/2+ 0,(E)) for R— oo,
where 05/(E) is the phase shift.

The quantum-mechanical radiative association cross section, summed over al-
lowed transitions between a continuum state with a positive energy E and relative
orbital angular momentum J’ to bound states with vibrational quantum number v”,
is given, in atomic units, by |14, 15|

O'(E) = Z O'J/7U//7J//(E) s (33)

J' g
where ;
64 m di
. 2
O-J’;'U”,J”(E) - ? 3 12 p V%'U” J S /II}// ME Tl J (34)
C ) ) b ) ) )

In Eq. (3.4) v is the emitted photon frequency which is equal to (E — Eyr_j» +
AE)/h, where E is the initial energy of relative motion, E,» ;» is the binding energy
of vibration-rotation level [v”, J"] and AE = limp .o, V'(R) — limpr_o V"(R) (see
Fig. 3.1). Obviously for one-state reaction AE = 0.

ME,J’;v”,J” = / XJ/(Ea R) Q(l) (R) wU"7J"(R) dR,
0

is the matrix element of the transition dipole moment between the initial energy-
normalized continuum wave function x,(E, R) for the partial wave J' and the fi-
nal bound-state wave function v~ j»(R). The wave functions x, and 1, j» were
calculated by numerical integration of the radial Schrodinger equation using the
Numerov-Cooley method |[7|, which was depicted in details in [1]. p is the prob-
ability of approach the fraction of collisions in the initial electronic state. For
Lit(1s*) + He(1s%), p= 1.

For electronic transitions with A2 = 0 (e. g., between two X-states) governed
by dipole moment we have the rotational selection rules AJ = J' — J” = F1, thus
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U'(R)
AE

\ hv

energy/ arbitrary units

El/”,J” U// (R)

N

internuclear distance R/ arbitrary units

Figure 3.1: Schematic figure of the molecular transition between a continuum state
with energy F supported by U’(R) and a vibrational-rotational bound state with

energy E,» j» supported by U”(R).

there are just only P and R branches. The corresponding Honl-London coefficients
read as

L(J,J") =J +1 for P-branch,
LI =T for R-branch

for the X 'X+ — X !3* dipole moment transition.
Total cross section o(F) for this process at a given collision energy E can be

decomposed as
o(E)=) o(E,J),
Jl

where each partial cross section o(FE, J') may be expressed as |3]

dEJ@:%p@f+nmEJq
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and

MU//7J/+1(E7 J/)Z + (35)

64 7t , J 41
VE;'U”,J’-}—I T—i—l

Jl
3 2
+ VE;U”,J’—I m MU//J/_l(E, J/) (36)
is the opacity for this collision.
The corresponding expression in Eq. (3.3) may be rewritten by [14] as well as
follows:

v//

max 64 7'('5 j/ —1
o(B) =) | S 5mP 2 vhwralJ + 1) Muysa (B + (3.7)
J'=0

3 A3k
v"'=0
J"+1 Urhax
+ Z I/%wu“]/_lt]/ Mv//J/,l(E, J/)2 = Z UU//(E) . (38)
J'=1 v =0

Expression in the angular bracket reflects the partial cross section o, (E) associated
to each final vibrational state v” and the rotational index changes over all possible
values up to J” —1 for the P-branch (J” = J'+1) and up to J” +1 for the R-branch
(J' = J —1). The notation J” = J”(v") means the largest possible value for the
rotational quantum number in the final vibrational state v”.

The probability of the transition, in this case photon emission, is taken to be
I'"*d per unit time. The radiative width of a quasi-bound level can be written by [3]

I, = h[Ap(v, J') + Ap(v', J')]
where

U J, E Av/ Jhu" I 41

v//

’U J, E A'U’ J/ ,UN J'—1

give the total spontaneous radiative decay rates via transitions with A J = F1,
respectively. As noted in Chapter 2, equation (2.1), the Einstein A-coefficient
for spontaneous dipole transition between a quasi-bound level [/, J'] and a bound
vibrational-rotational level [v”, J”] reads

32 7
3 2
—3 - Vyr grah i yJ/7J// MU’ Tl
C ) ) k) ) bl )

The phase shifts 0, for each .J' are obtained from the asymptotic behaviour of
the wave function x(R) o sin(kR — J'n/2 + ), using the algorithm of (1.9).

Av/,J/;v”,J” =
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3.2 Results

In Table 3.1 the vibrational and rotational quantum numbers, v and .J, are tabulated
alongside the corresponding eigenenergies £, ;. Energies and tunnelling widths were
calculated using the computer program LEVEL 7.7 of Le Roy [17, 18].

In Table 3.2 widths and radiative lifetimes for the quasi-bound resonant states
are collected. The two resonances with the narrowest tunnelling widths, [0, 18] and
[1,15], have radiative lifetimes significantly shorter than tunnelling lifetimes.

The potential and dipole-moment interpolation subroutines were provided by P.
Soldan [21]. The potential energy curve of the X '¥* ground state for the process
(3.1) is shown in Fig. 3.2. The zero of energy is set at the dissociation limit.

400 T T L L L L L T T

200 b

-200 .

U(R) (ecm™1)

-400 b

-600 .

_800 1 1 1 1 1 1 1

R (ao)

Figure 3.2: Plot of the potential of the molecular ion LiHe™ in the ground electronic
state X 137 with its 7 bound states for J” = 0.

The radiative widths, phase shifts, scattering cross sections, and cross sections
for radiative association were calculated by making use of our own computer codes
[2]. The integration for the continuum wave function was carried out over the range
from R = 1.2a9 to R = 1001.2a9. The masses of the two atomic species are taken
to have the values m (*He) = 4.00260324 u and m ("Li) = 7.0160030 u.
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Table 3.1: Bound states and resonances of the molecular ion LiHe™ (X '¥7). Energy units are cm™!, and £ = 0 at
dissociation. Energies and tunnelling widths were calculated using LEVEL 7.7 [17, 18].

v J EU,J FE,J v J EU,J FZ,J v J E’U,J FE,J

0 0 —523.828665 1 7 —234.441164 3 3 —66.395977

0 1 -—520.391051 1 8 —212.245308 3 4 —59.794594

0 2 —=513.524705 1 9 —187.612449 3 5 —=51.721341

0 3 —503.247477 1 10 —-160.679082 3 6 —42.309086

0 4 —489.586357 1 11 -131.610006 3 7 —31.735443

0 5 —472.577750 1 12 —-100.606469 3 8 —20.241375

0 6 —452.267856 1 13 —67.919463 3 9 —=8.170520

0 7 —428.713194 1 14 —33.873500 3 10 3.915842 0.430140E£—-04
0 8 —401.981289 1 15 1.084363 0.333273E-25 3 11 14.834581 1.159244

0 9 —372.151568 1 16 36.250312 0.563019E£—-03 4 0 —28.192923

0 10 —339.316551 1 17 70.058604 0.707783 4 1 =27.077585

0 11 —303.583420 2 0 —167.663356 4 2 —24.876259

0 12 —265.076136 2 1 —165.343526 4 3 —21.649754

0 13 —223.938361 2 2 —-160.719722 4 4 —17.495260

0 14 —180.337616 2 3 —153.824092 4 5 —12.556094

0 15 —134.471430 2 4 —144.705984 4 6  —7.042051

0 16 —86.576987 2 5 —133.433459 4 7 —1.282597

0 17 —36.947430 2 6 —120.095584 4 8 4.012297 0.257264

0 18 14.037107 0.496631E£—-15 2 7 —104.805871 5 0 —=7.410469

0 19 65.837039 0.417492E—-04 2 8  —87.707479 5 1 —6.800953

0 20 117.475804 0.936215E—-01 2 9  —68.981371 5 2 —5.620133

0 21 167.328071 2.959228 2 10  —48.859876 5 3 —=3.950100

1 0 —314.221174 2 11  —27.651455 5 4 —1.933488

1 1 -311.318136 2 12 —5.793621 5 5 0.164320 0.546609E£—04
1 2 —-305.523666 2 13 15.987916 0.117041E—-02 6 0 —0.980784

1 3 —296.861167 2 14 36.109853 1.476570 6 1 —0.748464

1 4 —285.366233 3 0 —=76.525097 6 2 —0.335863

1 5 —271.087293 3 1 —74.818489 6 3 0.109688 0.445954E—01
1 6 —254.086525 3 2 —=71.427187 7 0 —0.010756




9¢

Table 3.2: Quasi-bound resonance states, tunnelling widths I}, ;,, radiative widths I#%, and the corresponding

lifetimes 7', ;,, 72#4, of the molecular ion LiHe™ (X !X*). Energy units are cm™'. Lifetimes are given in s.

Q\'\

J/

E

1—‘2)/ 7{]/

I

7—,3/ !

T;?f}]/

DU W WNON —=RFEREFEOOOO

18
19
20
21
15
16
17
13
14
10
11

8

5

3

14.037107
65.837039
117.475804
167.328071
1.084363
36.250312
70.058604
15.987916
36.109853
3.915842
14.834581
4.012297
0.164320
0.109688

0.496631E—15
0.417492E—-04
0.936215£—-01
2.959228
0.333273E-25
0.563019E£—03
0.707783
0.117041E-02
1.476570
0.430140E—-04
1.159244
0.257264
0.546609E —04
0.445954E—01

0.192826 E+07
0

0

0

0.100601 E+18
0.518663 L —06
0.649969E —05
0.386258 E—05
0.998735E—05
0.218746 £'—06
0.105469L —04
0.190346 £ —04
0.728781E—06
0.261698 E'—05

0.106897E+05
0.127162E—06
0.567054E—10
0.179399E—11
0.159294F£+15
0.942923 E—08
0.750066 £ —11
0.453589E—08
0.359539E—11
0.123421E—-06
0.457957FE—11
0.206358 E—10
0.971231E-07
0.119045E-09

0.275317E—17

0.527711E—28
0.102356 £ —04
0.816783E—06
0.137443E—05
0.531556E£'—06
0.242694E—-04
0.503358 ' —06
0.278904E£—06
0.728454E—05
0.202861L—05
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3.2.1 Phase shifts and cross sections for resonances of the
molecular ion LiHe™

In the first stage we have calculated the phase shifts and the partial scattering cross
sections in the vicinity of resonance energies in order to verify the results of LEVEL
7.7. Figures for the very narrow resonances, [0, 18] and [1, 15], are not listed as they

are not resolved within the 16 digit accuracy.
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Figure 3.3: Computed phase shift and partial (J° = 19) scattering cross section

resonance line shape on vibrational manifold v' = 0.
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Figure 3.4: Computed phase shift and partial (J' = 20) scattering cross section
resonance line shape on vibrational manifold v' = 0.
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Figure 3.5: Computed phase shift and partial (J' = 21) scattering cross section
resonance line shape on vibrational manifold v' = 0.
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Figure 3.6: Computed phase shift and partial (J° = 16) scattering cross section
resonance line shape on vibrational manifold v' = 1.
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Figure 3.7: Computed phase shift and partial (J' = 17) scattering cross section
resonance line shape on vibrational manifold v" = 1.
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Figure 3.8: Computed phase shift and partial (J° = 13) scattering cross section
resonance line shape on vibrational manifold v' = 2.
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Figure 3.9: Computed phase shift and partial (J' = 14) scattering cross section
resonance line shape on vibrational manifold v' = 2.
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Figure 3.10: Computed phase shift and partial (J' = 10) scattering cross section
resonance line shape on vibrational manifold v' = 3.
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Figure 3.11: Computed phase shift and partial (J' = 8) scattering cross section
resonance line shape on vibrational manifold v' = 4.
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Figure 3.13: Computed phase shift and partial (J' = 3)
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As we can see, there is a good agreement between the semiclassical results of
LEVEL 7.7 and the results of our scattering calculations.

3.2.2 The cross sections for radiative association

In Fig. 3.14 we illustrate the evaluated radiative cross section for process (3.1) for
different collision energy values in the interval between 10~2cm~! and 10*cm™!.
The partial cross sections as a function of energy, o, (F), for radiative association
to form LiHe™ (X 'X7) are shown in Figures 3.15 — 3.21. From the listed results, we
observe that the partial cross sections exhibit a very strong dependence on the final
vibrational state into which the molecular ion is formed after the photon emission.
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[1,15] [0,18]
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1e-08 | 16,31 :
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Fep 16—10 - B
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16—16 I I I I I
0.01 0.1 1 10 100 1000 10000

E(cm™1)
Figure 3.14: The total cross section for radiative association of Li* (1s%)+ He(1s?) in

a.u. as a function of relative energy. The peaks represent contribution of resonant
states [v', J'].
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Figure 3.15: Computed partial cross section for radiative association of Li*(1s%) +
He(1s%) in a.u. as a function of relative energy for the final vibrational state v” = 0.
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Figure 3.16: Computed partial cross section for radiative association of Li'(1s%) +
He(1s?) in a.u. as a function of relative energy for the final vibrational state v” = 1.
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Figure 3.17: Computed partial cross section for radiative association of Li*(1s%) +
He(1s?) in a.u. as a function of relative energy for the final vibrational state v” = 2.
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Figure 3.18: Computed partial cross section for radiative association of Li*(1s%) +
He(1s?) in a.u. as a function of relative energy for the final vibrational state v” = 3.
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Figure 3.19: Computed partial cross section for radiative association of Li*(1s%) +
He(1s?) in a.u. as a function of relative energy for the final vibrational state v” = 4.
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Figure 3.20: Computed partial cross section for radiative association of Li* (1s%) +
He(1s?) in a.u. as a function of relative energy for the final vibrational state v” = 5.
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Figure 3.21: Computed partial cross section for radiative association of Li*(1s%) +
He(1s?) in a.u. as a function of relative energy for the final vibrational state v” = 6.
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Chapter 4

Conclusion and further perspectives

In this diploma thesis we dealt with the phenomenon of radiative association in the
case of diatomic molecules. The role of potential barrier in a resonance scatter-
ing was briefly discussed on a model example. Honl-London coefficients for dipole
moment and quadrupole moment transitions were derived. We carried out quantum-
mechanical calculations for direct radiative association of the LiHe™ (X '>T) molecu-
lar ion starting from Li" (1s*) 4+ He(1s?). The dipole moment transition considered is
from the ground electronic state to the ground electronic state, i.e., X — X process.
In near future our study will be extended to the processes

Li(1s*2s) + He' (1s) — LiHe"(X'St) + v, A — X,
Li(1s*2s) + He' (1s) — LiHe"(A'S%) + v, A — A,
Li(1s*2s) + He' (1s) — LiHe™(a°S") + hv, a— a.
In future we would like to investigate the process of radiative association of Hey,
particularly
He(1s%) 4+ He' (1s) — Hef (X25F) + hv, X — X,
He(1s%) + He' (1s) — Hef (X*%F) + hv, A — X,
He(1s”) + He' (1s) — Hej (A?S)) + hv, A— A.
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