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IntrodutionRadiative assoiation is an important proess in the gas phase hemistry of interstel-lar louds [19, 8℄. The �rst galaxies and stars were formed from a gas of H and 4Hewith trae amounts of D, 3He and 7Li [23℄. The sale of the �rst osmologial objetsformed in the Universe was ontrolled by ooling, and it is often moleular oolingthat allows primordial louds to ollapse. Therefore the study of the �rst moleulesformation by radiative proesses in primordial gases is important [13, 25, 3, 9, 22℄.Radiative assoiation of Li+ + He, whih is onsidered in this thesis, has not beenstudied yet.Let us present the brief overview of the ontents of this diploma thesis. InChapter 1 we show that a potential barrier leads to shape resonanes in the problemof resonane sattering by a model repulsive barrier. Quasi-stationary levels areloated using a boundary ondition method, the orresponding wave funtions andother harateristis will be found.In Chapter 2 we derive the multipole line strength for Hund's ase (a) linearmoleules through the use of Clebsh-Gordan angular momentum oupling oe�-ients. We treat all the basi onepts of eletri transitions using a quadrupolemoment terminology, whih is rarely disussed in the literature.The Chapter 3 deals with diret radiative assoiation, whih an our whena pair of atomi speies approahes along potential energy urve with a relativeenergy forming initially a ollision omplex. This unstable omplex, generally on-sidered to exist in the vibrational ontinuum of the ground/exited eletroni state,deays to a vibrational-rotational level of a lower bound eletroni state. Radiativeassoiation an proeed by spontaneous emission of a photon with energy equal to
hν. We summarize the relevant theory and arry out expliit alulations of theross setions for the radiative assoiation of Li+(1s2) + He(1s2). These results areobtained using a fully quantum mehanial method. Computations are arried outin the programming language FORTRAN 95.
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Chapter 1Resonant sattering by a repulsivebarrierIn this hapter we shall disuss resonanes in atoms/moleules, that is, states whihan be regarded as a temporary bound state apable of deaying by partile emission.For a resonane to our there are di�erent mehanisms for retaining a projetile inthe target. A simple mean by whih the projetile is trapped is a potential barrier.Let us suppose that the inident partile experienes a region of attrative potentialsurrounded by a region of repulsive potential. If the partile enters the region ofattrative potential, the surrounding potential barrier will hinder its esape. Themost ommon ause of a barrier is the entrifugal potential, but there are also manypotential urves whih have barrier even for zero angular momentum. Resonaneswhih are supported by potential barriers are alled shape resonanes.The best-known example is the radioative nulei whih deay by the emissionof an α-partile whih has tunnelled through the Coulomb barrier. The potentialenergy of an α-partile in the �eld of a nuleus onsists of two parts, the attrativepotential due to the short-range nulear fores, and the potential barrier produed bythe Coulomb repulsion between protons and by the entrifugal fore. The emissionof an α-partile is represented as a spei� quantum phenomenon resulting from thetranspareny of the barrier.The potential neessary for the existene of shape resonanes an be found inboth nulear and moleular systems. In atomi and moleular systems the attrativepotential is due to the Coulomb attration of eletrons and protons, whereas thebarrier is normally aused by the entrifugal fore.
2



1.1 Theoretial modelLet us onsider a model with a spherially symmetri repulsive shell potential of asimpli�ed shape
U(r) =







0 0 < r< r1 ,
U0 r1 ≤ r≤ r2 ,
0 r2< r.The inident motion is assumed to be in the z diretion, angular momentum isonserved, the radial part of the wave funtion satis�es one-dimensional equation
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R(r) = ER(r), r ≥ 0, (1.1)where
VL(r) =

~
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+ U(r) .and m is the mass of a partile. By substituting R(r) = ψ(r)/r equation (1.1) issimpli�ed to the one-dimensional radial Shrödinger equation of the form
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ψ(r) = Eψ(r) . (1.2)One boundary ondition being ψ(0) = 0, the other ondition is not imposedforasmuh as in the range of large values of the independent variable the solution ofthe Shrödinger equation exhibits sinusoidal behaviour.In the region I the wave funtion vanishing for r = 0 has the form
ψ(r) = A sin kr , k2 =

2ME

~2
.In the region II the general solution with respet to r − r1 is

ψ(r) = B+e
κ(r−r1) +B−e
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~2
.For the wave funtion in the region III, where one again U = 0, we have

ψ(r) = C+e
ik(r−r2) + C−e

−ik(r−r2) .The oe�ients B+, B−, C+, C− are determined from the ontinuity ondition of thewave funtion and its �rst derivative. At the boundary of regions I and II theseonditions lead to the relations
A sin kr1 = B+ +B− ,

Ak cos kr1 = κ(B+ − B−) ,3
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(1.4)
The formulae (1.3) and (1.4) onstitute the stationary wave funtion orrespondingto the energy E whih largely in�uenes the behavior of the wave funtion for thepartile. We shall onsider the limiting ase κ(r2 − r1) ≫ 1. Then we may negletall the terms ontaining the fator e−2κ(r2−r1) and the oe�ients will then have theform

C+ ≈ 1

4
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)

, C− = C∗
+ .The quantity of C+ and C− ompared to A depends to a great extent on the expres-sion 1 + (k/κ) cot kr1. For ertain values of the energy alled the quasi-stationarylevels, whih lie in the viinity of the roots of the transendental equation

1 +

√

En

U0 −En
cot

√
2MEn

~
r1 = 0 , (1.5)the oe�ients C+, C− are onsiderably smaller than A.It may readily be shown from the ondition of ontinuity ψ and ψ′ and from theboundary ondition for large r that the roots of Eq. (1.5) are bound states for apartile in the potential shown in Fig. 1.1 (r2 → ∞).4



1.2 Numerial resultsIn our numerial study we onsider a partiular retangular barrier with the param-eters U0 = 1 eV, r1 = 10−9 m, r2 = 2×10−9 m. Numerial omputation with eletronmass 0.510998910 MeV/c2 gives quasi-energy levels of Eres1 = 0.259051096847 eVand Eres2 = 0.947017018143 eV (Fig. 1.2) whih are found when the expressionin the square brakets of (1.4) vanishes. These values were obtained using thesoftware Maple 11, spei�ally the "fsolve" ommand. Solving Eq. (1.5) gives
E1 = 0.259061203092 eV and E2 = 0.938471516153 eV.Therefore the wave funtions orresponding to the values of the energies in thenarrow band in the viinity of the quasi-levels are suppressed by the potential bar-rier in the region III (see Fig. 1.3a). This e�et of resonant behavior beomespartiularly evident in Fig. 1.4b and 1.5a, in whih the wave funtions are shownat �xed resonane energies Eres1 and Eres2.Figures 1.3b, 1.5b and 1.3, 1.5 illustrate the behavior of wave funtions forthe external quasi-bound region. The dominant amplitude shifts to the region III,where the wave funtion di�ers signi�antly from zero as seen in Fig. 1.3 and 1.5.Finally, note the sharp variation in the amplitudes and the hange of π in the phaseshift when passing through the resonane point E = Eres1 in Fig. 1.4.The results shown in Figures (1.3a) and (1.4b) indiate that the �rst (lower)resonane is well loalized by the formula (1.5) whih is in agreement with theassumption κ(r2 − r1) ≫ 1. For the seond (higher) resonane, this assumption annot be used to simplify Eq. (1.4).
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The resonane is haraterized by its energy E and tunelling width Γt. Thelifetime of the deay and the energy is related by an approximate formula [16℄
τ t =

M

8~

κ4
0

κ3k3
e2κ(r2−r1)(1 + κr1) , κ2

0 =
2M(U0 −E0)

~2
, (1.6)where E0 is the lowest resonane energy. The width Γt is determined from thelifetime of the state by the relation

Γt =
~

τ t
. (1.7)Calulated values of resonane widths and lifetimes for the resonane energies viaequations (1.6) and (1.7) are listed in Table 1.1.Table 1.1: Comparison of alulated resonane widths and lifetimes.

E Γt τ t

Eres1 = 0.259051096847 eV 0.000066940095 eV 9.83 × 10−12 s

Eres2 = 0.947017018143 eV 0.014213192312 eV 4.63 × 10−14 sThe solution of Eq. (1.2) has the asymptoti form (i.e., for r → ∞) [20℄
ψ(r) ≃ D [sin (kr − Lπ/2) + tan δL cos (kr − Lπ/2)] , (1.8)where δL is the real sattering phase shift of the Lth partial wave indued by thepotential V (r). The value of tan δL may be omputed using the formula

tan δL =
ψ(R2) sin (kR1 − Lπ/2) − ψ(R1) sin (kR2 − Lπ/2)

ψ(R1) cos (kR2 − Lπ/2) − ψ(R2) cos (kR1 − Lπ/2)
(1.9)for R1 and R2 distint points in the asymptoti region suh that R2 is the right-handend point of the interval of integration and R1 = R2−h where h is the step interval.The term Lπ/2 in (1.8) is onventional. The numbers [5℄

σL(E) =
2π~

2

ME
(2L+ 1) sin2 δL(E)are usually alled partial ross setions, and the total sattering ross setion σ(E)is their sum over all L.The partial ross setions for L = 0 as a funtion of the energy for eah of thequasi-bound states are displayed in Figure 1.7. The phase shift behavior for L = 0is indiated in Figure 1.6.As we shall see in the third hapter the quasi-bound resonane states play aruial role in the proess of radiative assoiation.10
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Chapter 2Theory of eletri-multipoletransitions for linear moleules
2.1 BakgroundLet an atom/moleule be in an exited level n, that is, in a level of more than theminimum energy. Einstein then asribes to it a ertain probability per unit time,
An→m, of making a spontaneous transition with emission of radiation to eah level
m of lower energy. For eletri dipole transitions, the Einstein transition probabilityof spontaneous emission from exited state n to lower state m is given in atomiunits (in whih ~ = e = me = 1) by [6℄

Adip.
n→m =

64π4ν̃3
n→m

3h

Sdip.(J ′, J ′′)

2J ′ + 1
, (2.1)where Sdip.(J ′, J ′′) is the line strength de�ned in the terms of the dipole moment and

ν̃n→m = (En,J ′ − Em,J ′′)/hc is the wavenumber of eah emitted photon. Similarly,the Einstein spontaneous quadrupole emission probability for the transition from nto m in atomi units beomes
Aquad.

n→m =
32π6ν̃5

n→m

5h

Squad.(J ′, J ′′)

2J ′ + 1
,where Squad.(J ′, J ′′) is the orresponding line strength for transition based on thequadrupole moment. Note the ommon onvention that J ′ orresponds to the upperrotational quantum number of the exited state n, while J ′′ orresponds to that ofthe lower state m.
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2.2 Fundamental formula for the line strengthsIn this setion we derive line strength formulae for Hund's ase (a) linear moleules.For general disussion of Hund's ases see Ref. [4℄. Throughout this hapter we willfollow notation of Ref. [11℄. Derivation will be performed for quadrupole moment.Generalized multipole line strength will be found through a diret analysis of thequadrupole line strength. We use apital letters for spae-�xed axes and lower aseletters for moleule-�xed axes. The notation for quantum number symbols will beas follows: The quantum number J orresponds to the total angular momentum ofa diatomi moleule. The total angular momentum exluding the eletroni spinangular momentum is represented by quantum number N .If the spin angular momentum S is tightly oupled to the internulear axis, theaxial omponents of the eletroni orbital angular momentum L and S are wellde�ned and are assigned a quantum number Λ and Σ. Their sum is denoted Ω, i.e.,
Ω = Λ + Σ. This kind of oupling, for whih J is the most appropriate quantumnumber to be used to desribe the total angular momentum, is alled Hund's ase(a). When the spin vetor S is no longer oupled to the internulear axis, Ω isonsequently not de�ned, and it is more appropriate to use N instead of the totalangular momentum quantum number. This is Hund's ase (b). These two ases arethe most widely observed for diatomi moleules. For Hund's ase (a) type moleulesthe projetion of angular momentum P along the internulear axis, represented byquantum number Ω, ommutes with Hamiltonian of the system. In other words Pis onserved.The eletri quadrupole moment an be written in terms of seond-rank spherialtensor omponents Q(2)

p (X), where X = (X, Y, Z) are the laboratory-�xed oordi-nates, and p = −2,−1, 0, 1, 2 represents the projetion quantum number of thequadrupole moment. Upon an inverse rotation to express the spae oordinates
(X, Y, Z) in terms of the moleular oordinates x = (x, y, z), in whih quantummehanial alulations are generally performed, the quadrupole moment beomes

Q(2)
p (X) =

∑

q

T (2)
pq

∗
Q(2)

q (x) , (2.2)where T (2)
pq

∗ is the seond-rank spherial rotation tensor in terms of the Euler angles
ω = (αβγ) satisfying

T (2)
pq (α, β, γ)∗ = T (2)

qp (−α,−β,−γ) .The symbol ω is ommonly used as a short-hand for the orientation (αβγ). Thevolume element for integration is dω = sin β dα dβ dγ , and ∫

dω = 8π2.The line strength Squad.(J ′, J ′′) for the eletri-quadrupole transition between13



two rovibroni states of the form
|ψi〉 = |n′, v′,Ω′; J ′,M ′,Ω′〉 = |n′, v′,Ω′〉 |J ′,M ′,Ω′〉 ,
|ψf 〉 = |n′′, v′′,Ω′′; J ′′,M ′′,Ω′′〉 = |n′′, v′′,Ω′′〉 |J ′′,M ′′,Ω′〉 ,where v is the vibrational quantum number, the label n stands for the assemblyof all other relevant eletroni quantum numbers and M range through the 2J + 1degeneraies, is given in the spae-�xed frame by

Squad.(J ′, J ′′) =
∑

p

∑

M ′,M ′′

∣

∣〈ψi|Q(2)
p (X) |ψf 〉

∣

∣

2
.To simplify the alulation, if there is no spatial preferene for the laboratory-�xedquadrupole moment, we may also hoose the Z-axis to be the internulear axis.Given these assumptions the quadrupole terms redue to �ve terms, in whih p anbe set to equal zero:

Squad.(J ′, J ′′) = 5
∑

M ′,M ′′

∣

∣

∣
〈ψi|Q(2)

0 (X) |ψf 〉
∣

∣

∣

2

.Introduing the transformation (2.2) into the above equation, we get
Squad.(J ′, J ′′) = 5

∑

M ′,M ′′

∣

∣

∣

∣

∣

∑

q

〈n′, v′,Ω′|Q(2)
q |n′′, v′′,Ω′′〉〈J ′,M ′,Ω′|T (2)

0q

∗ |J ′′,M ′′,Ω′′〉
∣

∣

∣

∣

∣

2

.(2.3)Note that we have made use of the Born-Oppenheimer approximation whih allowsus to separate the vibroni |n, v,Ω〉 and rotational |J,M,Ω〉 wave funtions.Due to the symmetry of linear moleules along the internulear axis, the nor-malized rotational wave funtion of a symmetri top is of the form [11℄
〈α, β, γ|J,M,Ω〉 =

(

2J + 1

8π2

)1/2

DJ
MΩ(αβγ)

∗
,where DJ

MΩ
∗ is the omplex onjugate of the MΩ element of the (2J +1)× (2J +1)matrix alled a Wigner rotation matrix. We now may evaluate the matrix elementsof T (2)

pq

∗ as
〈J ′,M ′,Ω′| T (2)

pq

∗ |J ′′,M ′′,Ω′′〉 =
[(2J ′ + 1)(2J ′′ + 1)]1/2

8π2

∫

DJ ′

M ′Ω′T (2)
pq

∗DJ ′′

M ′′Ω′′

∗
dω .(2.4)The value of the integral in Eq. (2.4) is given as a funtion of Clebsh-Gordanoe�ients by

∫

DJ ′

M ′Ω′T
(2)
0q

∗DJ ′′

M ′′Ω′′

∗
dω =

8π2

2J ′ + 1
〈J ′,Ω′|J ′′,Ω′′; 2, q〉〈J ′,M ′|J ′′,M ′′; 2, 0〉 . (2.5)14



Using (2.4) and (2.5), Eq. (2.3) an be now rewritten as
Squad.(J ′, J ′′) = 5

2J ′′ + 1

2J ′ + 1

∑

M ′,M ′′

|〈J ′′,M ′′; 2, 0|J ′M ′〉|2 ×

×
∣

∣

∣

∣

∣

∑

q

〈n′, v′,Ω′|Q(2)
q |n′′, v′′,Ω′′〉〈J ′,M ′,Ω′|T (2)

0q

∗
|J ′′,M ′′,Ω′′〉

∣

∣

∣

∣

∣

2

.If we now rewrite 〈J ′′,M ′′; 2, 0|J ′M ′〉 through the identity [12℄
〈j1, m1; j2, m2|J,M〉 = (−1)j1−m1

(

2J + 1

2j2 + 1

)1/2

〈j1, m1; J,−M |j2,−m2〉and apply the sum rule property (2.7) on the term ∑

M ′,M ′′|〈J ′′,M ′′; J ′,−M ′|2, 0〉|2,then the line strength redues to
Squad.(J ′, J ′′) = (2J ′′ + 1)

∣

∣

∣

∣

∣

∑

q

〈n′, v′,Ω′|Q(2)
q |n′′, v′′,Ω′′〉〈J ′,M ′,Ω′|T (2)

0q

∗
|J ′′,M ′′,Ω′′〉

∣

∣

∣

∣

∣

2

.The summation over q = Ω′ − Ω′′ = △Ω is redundant, beause only one value for qis de�ned by the transition being onsidered, namely
Squad.(J ′, J ′′) =

∣

∣〈n′, v′,Ω′|Q(2) |n′′, v′′,Ω′′〉
∣

∣

2
(2J ′′ + 1) |〈J ′′,Ω′′; 2,△Ω|J ′,Ω′〉|2 ,for △Ω = −2,−1, 0, 1, 2 and for △J = J ′ − J ′′ = −2,−1, 0, 1, 2 (the O, P , Q, R, Sbranhes). Aordingly, for a dipole moment

Sdip.(J ′, J ′′) =
∣

∣〈n′, v′,Ω′|Q(1) |n′′, v′′,Ω′′〉
∣

∣

2
(2J ′′ + 1) |〈J ′′,Ω′′; 1,△Ω|J ′,Ω′〉|2 ,for △Ω = −1, 0, 1 and for △J = J ′ − J ′′ = −1, 0, 1 (the P , Q, R branhes). Thegeneral multipole line strength formula for an allowed rovibroni transition an bealulated through the same proedure to obtain

Sl−pole(J ′, J ′′) =
∣

∣

∣
M

(l)
n′,v′,Ω′;n′′,v′′,Ω′′

∣

∣

∣

2

S
l−pole(J ′, J ′′)where the vibroni transition moment is given by

M
(l)
n′,v′,Ω′;n′′,v′′,Ω′′ = 〈n′, v′,Ω′|Q(l) |n′′, v′′,Ω′′〉 (2.6)and the quantity representing a rotational part of the line strength is alled theHönl-London fator

S
l−pole(J ′, J ′′) = (2J ′′ + 1) |〈J ′′,Ω′′; l,△Ω|J ′,Ω′〉|2 .15



for △Ω = −l,−l + 1, . . . , l − 1, l and for △J = J ′ − J ′′ = −l,−l + 1, . . . , l − 1, l.Expliit expressions for the Hönl-London fators of dipole and quadrupole momentare given in Tables 2.1 and 2.2.Finally, we separate o� the eletroni motion by invoking the Born-Oppenheimerapproximation, when the eletroni wave funtion is obtained on the assumptionthat the nulei are at a �xed separation R, by writing the vibroni wave funtionas a produt |n, v,Ω〉 = ψn,Ω(re;R)ψv(R). Therefore, the matrix element of thetransition moment (2.6) an be written as
M

(l)
v′,v′′ =

∫ ∞

0

ψv′(R)Q(l)(R)ψv′′(R) dR .Table 2.1: Hönl-London fators for eletri dipole transitions of linear Hund's ase(a) moleules.
S dip.(J ′, J ′′) △J = −1 △J = 0 △J = +1

P -branh Q-branh R-branh
△Ω = −1 (J ′+Ω′+1)(J ′+Ω′+2)

2(J ′+1)
(2J ′+1)(J ′−Ω′)(J ′+Ω′+1)

2J ′(J ′+1)
(J ′−Ω′−1)(J ′−Ω′)

2J ′

△Ω = 0 (J ′−Ω′+1)(J ′+Ω′+1)
J ′+1

Ω′2(2J ′+1)
J ′(J ′+1)

(J ′−Ω′)(J ′+Ω′)
J ′

△Ω = +1 (J ′−Ω′+1)(J ′−Ω′+2)
2(J ′+1)

(2J ′+1)(J ′+Ω′)(J ′−Ω′+1)
2J ′(J ′+1)

(J ′+Ω′−1)(J ′+Ω′)
2J ′

16



Table 2.2: Hönl-London fators for eletri quadrupole transitions of linear Hund's ase (a) moleules.
S quad.(J ′, J ′′) △J = −1 △J = 0 △J = +1

P -branh Q-branh R-branh
△Ω = −2 (J ′−Ω′)(J ′+Ω′+1)(J ′+Ω′+2)(J ′+Ω′+3)

2J ′(J ′+1)(J ′+2)
3(2J ′+1)(J ′−Ω′−1)(J ′−Ω′)(J ′+Ω′+1)(J ′+Ω′+2)

(2J ′−1)2J ′(J ′+1)(2J ′+3)
(J ′−Ω′−2)(J ′−Ω′−1)(J ′−Ω′)(J ′+Ω′+1)

2(J ′−1)J ′(J ′+1)

△Ω = −1 (J ′−2Ω′)2(J ′+Ω′+1)(J ′+Ω′+2)
2J ′(J ′+1)(J ′+2)

3(2J ′+1)(2Ω′+1)2(J ′−Ω′)(J ′+Ω′+1)
2(2J ′−1)J ′(J ′+1)(2J ′+3)

(J ′+2Ω′+1)2(J ′−Ω′−1)(J ′−Ω′)
2(J ′−1)J ′(J ′+1)

△Ω = 0 3Ω′2(J ′−Ω′+1)(J ′+Ω′+1)
J ′(J ′+1)(J ′+2)

(2J ′+1)(3Ω′2−J ′(J ′+1))2

J ′(J ′+1)(2J ′−1)(2J ′+3)
3Ω′2(J ′−Ω′)(J ′+Ω′)

(J ′−1)J ′(J ′+1)

△Ω = +1 (J ′+2Ω′)2(J ′−Ω′+1)(J ′−Ω′+2)
2J ′(J ′+1)(J ′+2)

3(2J ′+1)(2Ω′−1)2(J ′+Ω′)(J ′−Ω′+1)
2(2J ′−1)J ′(J ′+1)(2J ′+3)

(J ′−2Ω′+1)2(J ′+Ω′−1)(J ′+Ω′)
2(J ′−1)J ′(J ′+1)

△Ω = +2 (J ′+Ω′)(J ′−Ω′+1)(J ′−Ω′+2)(J ′−Ω′+3)
2J ′(J ′+1)(J ′+2)

3(2J ′+1)(J ′+Ω′−1)(J ′+Ω′)(J ′−Ω′+1)(J ′−Ω′+2)
(2J ′−1)2J ′(J ′+1)(2J ′+3)

(J ′+Ω′−2)(J ′+Ω′−1)(J ′+Ω′)(J ′−Ω′+1)
2(J ′−1)J ′(J ′+1)

S quad.(J ′, J ′′) △J = −2 △J = +2

O-branh S-branh

△Ω = −2 (J ′+Ω′+1)(J ′+Ω′+2)(J ′+Ω′+3)(J ′+Ω′+4)
4(J ′+1)(J ′+2)(2J ′+3)

(J ′−Ω′−3)(J ′−Ω′−2)(J ′−Ω′−1)(J ′−Ω′)
4J ′(J ′−1)(2J ′−1)

△Ω = −1 (J ′−Ω′+1)(J ′+Ω′+1)(J ′+Ω′+2)(J ′+Ω′+3)
(J ′+1)(J ′+2)(2J ′+3)

(J ′−Ω′−2)(J ′−Ω′−1)(J ′−Ω′)(J ′+Ω′)
J ′(J ′−1)(2J ′−1)

△Ω = 0 3(J ′−Ω′+1)(J ′−Ω′+2)(J ′+Ω′+1)(J ′+Ω′+2)
2(J ′+1)(J ′+2)(2J ′+3)

3(J ′−Ω′−1)(J ′−Ω′)(J ′+Ω′−1)(J ′+Ω′)
2J ′(J ′−1)(2J ′−1)

△Ω = +1 (J ′−Ω′+1)(J ′−Ω′+2)(J ′−Ω′+3)(J ′+Ω′+1)
(J ′+1)(J ′+2)(2J ′+3)

(J ′−Ω′)(J ′+Ω′)(J ′+Ω′−1)(J ′+Ω′−2)
J ′(J ′−1)(2J ′−1)

△Ω = +2 (J ′−Ω′+1)(J ′−Ω′+2)(J ′−Ω′+3)(J ′−Ω′+4)
4(J ′+1)(J ′+2)(2J ′+3)

(J ′+Ω′−3)(J ′+Ω′−2)(J ′+Ω′−1)(J ′+Ω′)
4J ′(J ′−1)(2J ′−1)
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2.3 Appendix: Coupling of angular momentaThe oupling of two angular momenta J1 and J2 to form a resultant one, J = J1+J2,is familiar to all physiists. It is supposed that J1 and J2 at on di�erent physialsystems, or else on independent parts of the same system. This guarantees that
J1 and J2 ommute, thereby ensuring that the omponents of J obey the standardommutation relations. We an desribe the ombined system by two types ofket. We an hoose either the unoupled states |j1, m1〉 |j2, m2〉, or the oupledstates |j,m, j1, j2〉. For a given j1 and j2, the tensor produt of the vetor spaespanned by the states |j1, m1〉 , m1 = −j1, . . . , j1 and of the vetor spae spannedby |j2, m2〉 , m2 = −j2, . . . , j2 has a (2j1 + 1)(2j2 + 1) dimensional unoupled basis
|j1, m1〉 |j2, m2〉. If we use the fat that j an run with integer step from j1 + j2down to |j1 − j2|, there is an equal number of oupled kets as ∑j1+j2

j=|j1−j2|
(2j + 1) =

(2j1 + 1)(2j2 + 1). The unitary transformation that onnets the two desriptionsan be written in the general form:
|j,m, j1, j2〉 =

∑

m1,m2

|j1, m1〉 |j2, m2〉 〈j1, j2, m1, m2|j,m〉 .The oe�ients 〈j1, j2, m1, m2|j,m〉 are the elebrated Clebsh-Gordan angular mo-mentum oupling oe�ients. Phases an be hosen so that they are all real. Thetotal angular momentum states satisfy the orthogonality relations:
∑

j,m

〈j1, m1, j2, m2|j,m〉 〈j,m|j1, m′
1, j2, m

′
2〉 = δm1,m′

1
δm2,m′

2
,

∑

m1,m2

〈j,m|j1, m1, j2, m2〉 〈j1, m1, j2, m2|j′, m′〉 = δj,j′δm,m′ . (2.7)The Clebsh-Gordan oe�ients are often replaed by the Wigner 3-j symbols,de�ned as
(

j1 j2 j3
m1 m2 m3

)

= (−1)j1−j2−m3(2j3 + 1)−1/2 〈j1, m1, j2, m2|j3,−m3〉 .They exhibit symmetry relations of the Clebsh-Gordan oe�ients in a more on-venient way. The 3-j symbol is invariant under an even or yli permutation in theorder of its olumns
(

j1 j2 j3
m1 m2 m3

)

=

(

j2 j3 j1
m2 m3 m1

)

=

(

j3 j1 j2
m3 m1 m2

)

,while odd permutation of the olumns multiplies the 3-j symbol by the phase fator
(−1)j1+j2+j3 18



(

j1 j2 j3
m1 m2 m3

)

= (−1)j1+j2+j3

(

j2 j1 j3
m2 m1 m3

)

,as does a reversal in sign of the entries of the lower row
(

j1 j2 j3
−m1 −m2 −m3

)

= (−1)j1+j2+j3

(

j1 j2 j3
m1 m2 m3

)

.Over the years, expliit algebrai formulae for the 3-j symbols have been alu-lated. The simplest of these formulae an be found tabulated in several texts, e.g.[4, 10℄.
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Chapter 3Radiative assoiation of LiHe+

3.1 Theory and numerial methodsIn this setion we study quantum mehanially the diret radiative assoiation pro-ess
Li+(1s2) + He (1s2) → LiHe+(X 1Σ+) + hν . (3.1)One-dimensional radial Shrödinger equations assoiated with the moleular forma-tion (3.1), in suh ase radiative transition from an initial eletroni state to another�nal eletroni state, are of the form

[

− ~
2

2µ

d2

dR2
+ VJ(R)

]

ψ(R) = E ψ(R) (3.2)with an e�etive potential
VJ(R) =

~
2

2µ

J(J + 1)

R2
+ U(R) .Here U(R) is a rotationless potential with a short-range repulsion and a long-rangeattration with the leading asymptoti term −C4/R

4 in the ase of moleular ionin an eletroni state Σ. That is, U(R) → 0 faster than the term J(J + 1)/R2so the latter is the dominant term for su�iently large values of R. µ denotes"harge-modi�ed redued mass" [24℄ of the moleular ion with harge Q, µ =
(mAmB)/(mA + mB − meQ), where mA and mB are the atomi masses of thetwo atoms, me is the eletron mass. The wave funtion satis�es the boundary on-dition ψ(0) = 0. In the so-alled asymptoti region, where the potential U(R) isnegligible, Eq. (3.2) is e�etively redued, in atomi units, to

[

− d2

dR2
+
J(J + 1)

R2

]

ψ(R) = k2ψ(R) for R → ∞ ,20



where k2 = 2µE.The radial wave funtions ψ = χJ ′ for E > 0 and ψ = ψv′′,J ′′ for E < 0are obtained as eigenfuntions of the Shrödinger equation (3.2) with a potentialurve V ′
J ′(R) for an initial eletroni state and V ′′

J ′′(R) for a �nal eletroni state,respetively. In our one-state proess X → X the above pair of Shrödinger equationssimpli�es to a single one from whih the radial wave funtions are obtained. Atsu�iently large distanes the funtion χJ ′ may be normalized to a delta funtionof energy δ(E − E ′) and so that it has the following asymptoti form [5℄
χJ ′(E,R) ≃

(

2µ

πk

)1/2

sin(kR− J ′π/2 + δJ ′(E)) for R → ∞ ,where δJ ′(E) is the phase shift.The quantum-mehanial radiative assoiation ross setion, summed over al-lowed transitions between a ontinuum state with a positive energy E and relativeorbital angular momentum J ′ to bound states with vibrational quantum number v′′,is given, in atomi units, by [14, 15℄
σ(E) =

∑

J ′,v′′,J ′′

σJ ′,v′′,J ′′(E) , (3.3)where
σJ ′;v′′,J ′′(E) =

64

3

π5

c3 k2
p ν3

E;v′′,J ′′ S
dip.
J ′,J ′′ M

2
E,J ′;v′′,J ′′ . (3.4)In Eq. (3.4) ν is the emitted photon frequeny whih is equal to (E − Ev′′,J ′′ +

∆E)/h, where E is the initial energy of relative motion, Ev′′,J ′′ is the binding energyof vibration-rotation level [v′′, J ′′] and ∆E = limR→∞ V ′(R) − limR→∞ V ′′(R) (seeFig. 3.1). Obviously for one-state reation ∆E = 0.
ME,J ′;v′′,J ′′ =

∫ ∞

0

χJ ′(E,R)Q(1)(R)ψv′′,J ′′(R) dRis the matrix element of the transition dipole moment between the initial energy-normalized ontinuum wave funtion χJ ′(E,R) for the partial wave J ′ and the �-nal bound-state wave funtion ψv′′,J ′′(R). The wave funtions χJ ′ and ψv′′,J ′′ werealulated by numerial integration of the radial Shrödinger equation using theNumerov-Cooley method [7℄, whih was depited in details in [1℄. p is the prob-ability of approah the fration of ollisions in the initial eletroni state. For
Li+(1s2) + He(1s2), p = 1.For eletroni transitions with △Ω = 0 (e. g., between two Σ-states) governedby dipole moment we have the rotational seletion rules △J = J ′ − J ′′ = ∓1, thus21
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Figure 3.1: Shemati �gure of the moleular transition between a ontinuum statewith energy E supported by U ′(R) and a vibrational-rotational bound state withenergy Ev′′,J ′′ supported by U ′′(R).there are just only P and R branhes. The orresponding Hönl-London oe�ientsread as
S (J ′, J ′′) = J ′ + 1 for P -branh,
S (J ′, J ′′) = J ′ for R-branhfor the X 1Σ+ → X 1Σ+ dipole moment transition.Total ross setion σ(E) for this proess at a given ollision energy E an bedeomposed as

σ(E) =
∑

J ′

σ(E, J ′) ,where eah partial ross setion σ(E, J ′) may be expressed as [3℄
σ(E, J ′) =

π

k2
p (2J ′ + 1)P(E, J ′)

22



and
P(E, J ′) =

64

3

π4

c3

∑

v′′

[

ν3
E;v′′,J ′+1

J ′ + 1

2J ′ + 1
Mv′′,J ′+1(E, J

′)2 + (3.5)
+ ν3

E;v′′,J ′−1

J ′

2J ′ + 1
Mv′′,J ′−1(E, J

′)2

] (3.6)is the opaity for this ollision.The orresponding expression in Eq. (3.3) may be rewritten by [14℄ as well asfollows:
σ(E) =

v′′max
∑

v′′=0





64

3

π5

c3 k2
p

Ĵ ′′−1
∑

J ′=0

ν3
E;v′′,J ′+1(J

′ + 1)Mv′′,J ′+1(E, J
′)2 + (3.7)

+

Ĵ ′′+1
∑

J ′=1

ν3
E;v′′,J ′−1J

′Mv′′,J ′−1(E, J
′)2



 =

v′′max
∑

v′′=0

σv′′(E) . (3.8)Expression in the angular braket re�ets the partial ross setion σv′′(E) assoiatedto eah �nal vibrational state v′′ and the rotational index hanges over all possiblevalues up to Ĵ ′′−1 for the P -branh (J ′′ = J ′+1) and up to Ĵ ′′+1 for the R-branh(J ′′ = J ′ − 1). The notation Ĵ ′′ = Ĵ ′′(v′′) means the largest possible value for therotational quantum number in the �nal vibrational state v′′.The probability of the transition, in this ase photon emission, is taken to be
Γrad per unit time. The radiative width of a quasi-bound level an be written by [3℄

Γrad
v′,J ′ = ~[AP (v′, J ′) + AR(v′, J ′)] ,where
AP (v′, J ′) =

∑

v′′

Av′,J ′;v′′,J ′+1 ,

AR(v′, J ′) =
∑

v′′

Av′,J ′;v′′,J ′−1give the total spontaneous radiative deay rates via transitions with △J = ∓1,respetively. As noted in Chapter 2, equation (2.1), the Einstein A-oe�ientfor spontaneous dipole transition between a quasi-bound level [v′, J ′] and a boundvibrational-rotational level [v′′, J ′′] reads
Av′,J ′;v′′,J ′′ =

32

3

π3

c3
ν3

v′,J ′;v′′,J ′′ SJ ′,J ′′ M2
v′,J ′;v′′,J ′′ .The phase shifts δJ ′ for eah J ′ are obtained from the asymptoti behaviour ofthe wave funtion χJ ′(R) ∝ sin(kR− J ′π/2 + δJ ′), using the algorithm of (1.9).23



3.2 ResultsIn Table 3.1 the vibrational and rotational quantum numbers, v and J , are tabulatedalongside the orresponding eigenenergies Ev,J . Energies and tunnelling widths werealulated using the omputer program LEVEL 7.7 of Le Roy [17, 18℄.In Table 3.2 widths and radiative lifetimes for the quasi-bound resonant statesare olleted. The two resonanes with the narrowest tunnelling widths, [0, 18] and
[1, 15], have radiative lifetimes signi�antly shorter than tunnelling lifetimes.The potential and dipole-moment interpolation subroutines were provided by P.Soldán [21℄. The potential energy urve of the X 1Σ+ ground state for the proess(3.1) is shown in Fig. 3.2. The zero of energy is set at the dissoiation limit.
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4002000-200-400-600-800Figure 3.2: Plot of the potential of the moleular ion LiHe+ in the ground eletronistate X 1Σ+ with its 7 bound states for J ′′ = 0.The radiative widths, phase shifts, sattering ross setions, and ross setionsfor radiative assoiation were alulated by making use of our own omputer odes[2℄. The integration for the ontinuum wave funtion was arried out over the rangefrom R = 1.2 a0 to R = 1001.2 a0. The masses of the two atomi speies are takento have the values m (4He) = 4.00260324 u and m (7Li) = 7.0160030 u.
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Table 3.1: Bound states and resonanes of the moleular ion LiHe+ (X 1Σ+). Energy units are cm−1, and E = 0 atdissoiation. Energies and tunnelling widths were alulated using LEVEL 7.7 [17, 18℄.
v J Ev,J Γt

v,J v J Ev,J Γt
v,J v J Ev,J Γt

v,J0 0 −523.828665 1 7 −234.441164 3 3 −66.3959770 1 −520.391051 1 8 −212.245308 3 4 −59.7945940 2 −513.524705 1 9 −187.612449 3 5 −51.7213410 3 −503.247477 1 10 −160.679082 3 6 −42.3090860 4 −489.586357 1 11 −131.610006 3 7 −31.7354430 5 −472.577750 1 12 −100.606469 3 8 −20.2413750 6 −452.267856 1 13 −67.919463 3 9 −8.1705200 7 −428.713194 1 14 −33.873500 3 10 3.915842 0.430140E−040 8 −401.981289 1 15 1.084363 0.333273E−25 3 11 14.834581 1.1592440 9 −372.151568 1 16 36.250312 0.563019E−03 4 0 −28.1929230 10 −339.316551 1 17 70.058604 0.707783 4 1 −27.0775850 11 −303.583420 2 0 −167.663356 4 2 −24.8762590 12 −265.076136 2 1 −165.343526 4 3 −21.6497540 13 −223.938361 2 2 −160.719722 4 4 −17.4952600 14 −180.337616 2 3 −153.824092 4 5 −12.5560940 15 −134.471430 2 4 −144.705984 4 6 −7.0420510 16 −86.576987 2 5 −133.433459 4 7 −1.2825970 17 −36.947430 2 6 −120.095584 4 8 4.012297 0.2572640 18 14.037107 0.496631E−15 2 7 −104.805871 5 0 −7.4104690 19 65.837039 0.417492E−04 2 8 −87.707479 5 1 −6.8009530 20 117.475804 0.936215E−01 2 9 −68.981371 5 2 −5.6201330 21 167.328071 2.959228 2 10 −48.859876 5 3 −3.9501001 0 −314.221174 2 11 −27.651455 5 4 −1.9334881 1 −311.318136 2 12 −5.793621 5 5 0.164320 0.546609E−041 2 −305.523666 2 13 15.987916 0.117041E−02 6 0 −0.9807841 3 −296.861167 2 14 36.109853 1.476570 6 1 −0.7484641 4 −285.366233 3 0 −76.525097 6 2 −0.3358631 5 −271.087293 3 1 −74.818489 6 3 0.109688 0.445954E−011 6 −254.086525 3 2 −71.427187 7 0 −0.010756
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Table 3.2: Quasi-bound resonane states, tunnelling widths Γt
v′,J ′, radiative widths Γrad

v′,J ′ and the orrespondinglifetimes τ t
v′,J ′, τ rad

v′,J ′ of the moleular ion LiHe+ (X 1Σ+). Energy units are cm−1. Lifetimes are given in s.
v′ J ′ E Γt

v′,J ′ Γrad
v′,J ′ τ t

v′,J ′ τ rad
v′,J ′

0 18 14.037107 0.496631E−15 0.192826E+07 0.106897E+05 0.275317E−17
0 19 65.837039 0.417492E−04 0 0.127162E−06 −
0 20 117.475804 0.936215E−01 0 0.567054E−10 −
0 21 167.328071 2.959228 0 0.179399E−11 −
1 15 1.084363 0.333273E−25 0.100601E+18 0.159294E+15 0.527711E−28
1 16 36.250312 0.563019E−03 0.518663E−06 0.942923E−08 0.102356E−04
1 17 70.058604 0.707783 0.649969E−05 0.750066E−11 0.816783E−06
2 13 15.987916 0.117041E−02 0.386258E−05 0.453589E−08 0.137443E−05
2 14 36.109853 1.476570 0.998735E−05 0.359539E−11 0.531556E−06
3 10 3.915842 0.430140E−04 0.218746E−06 0.123421E−06 0.242694E−04
3 11 14.834581 1.159244 0.105469E−04 0.457957E−11 0.503358E−06
4 8 4.012297 0.257264 0.190346E−04 0.206358E−10 0.278904E−06
5 5 0.164320 0.546609E−04 0.728781E−06 0.971231E−07 0.728454E−05
6 3 0.109688 0.445954E−01 0.261698E−05 0.119045E−09 0.202861E−05
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3.2.1 Phase shifts and ross setions for resonanes of themoleular ion LiHe+In the �rst stage we have alulated the phase shifts and the partial sattering rosssetions in the viinity of resonane energies in order to verify the results of LEVEL7.7. Figures for the very narrow resonanes, [0, 18] and [1, 15], are not listed as theyare not resolved within the 16 digit auray.
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As we an see, there is a good agreement between the semilassial results ofLEVEL 7.7 and the results of our sattering alulations.3.2.2 The ross setions for radiative assoiationIn Fig. 3.14 we illustrate the evaluated radiative ross setion for proess (3.1) fordi�erent ollision energy values in the interval between 10−2 cm−1 and 104 cm−1.The partial ross setions as a funtion of energy, σv′′(E), for radiative assoiationto form LiHe+ (X 1Σ+) are shown in Figures 3.15 � 3.21. From the listed results, weobserve that the partial ross setions exhibit a very strong dependene on the �nalvibrational state into whih the moleular ion is formed after the photon emission.
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Chapter 4Conlusion and further perspetivesIn this diploma thesis we dealt with the phenomenon of radiative assoiation in thease of diatomi moleules. The role of potential barrier in a resonane satter-ing was brie�y disussed on a model example. Hönl-London oe�ients for dipolemoment and quadrupole moment transitions were derived. We arried out quantum-mehanial alulations for diret radiative assoiation of the LiHe+(X 1Σ+) moleu-lar ion starting from Li+(1s2)+He(1s2). The dipole moment transition onsidered isfrom the ground eletroni state to the ground eletroni state, i.e., X → X proess.In near future our study will be extended to the proesses
Li(1s2 2s) + He+ (1s) → LiHe+(X 1Σ+) + hν, A → X ,
Li(1s2 2s) + He+ (1s) → LiHe+(A 1Σ+) + hν, A → A ,
Li(1s2 2s) + He+ (1s) → LiHe+(a 3Σ+) + hν, a → a .In future we would like to investigate the proess of radiative assoiation of He+

2 ,partiularly
He(1s2) + He+ (1s) → He+

2 (X 2Σ+
u ) + hν, X → X ,

He(1s2) + He+ (1s) → He+
2 (X 2Σ+

u ) + hν, A → X ,
He(1s2) + He+ (1s) → He+

2 (A 2Σ+
g ) + hν, A → A .
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